
JSON Overview

Copyright
Attribution-NonCommercial-NoDerivatives 4.0 International

(CC BY-NC-ND 4.0)

This is a human-readable summary of (and not a substitute for) the license.

See: https://creativecommons.org/licenses/by-nc-nd/4.0/ for the full details.

You are free to:
Share — copy and redistribute the material in any medium or format
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes
were made. You may do so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the
modified material.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

Notices:
You do not have to comply with the license for elements of the material in the public domain or where
your use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your
intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you
use the material.

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

2

https://creativecommons.org/licenses/by-nc-nd/4.0/

Table of Contents
Copyright...2
Introduction..5
Background of JSON...6

Origins...6
Current JSON Standards...6
Lab: JSON Standards..7

Exploring the Standards..7
Where JSON is used..8

Web Applications...8
NoSQL Databases...8
Configuration Files..9
HTML 5 Local Storage...10
Node.js...11
Lab: JSON Usage..11

Using JSON in a REST style Web Service...11
Using JSON as a configuration format...12

JSON Syntax..13
JSON Objects..13
JSON Arrays..14
JSON Fields...14
Lab: JSON Syntax...15

Working with JSON Objects..15
Working with JSON Arrays..15
Working with JSON Fields...15
Recognizing JSON Errors...15

Lab: Working with Complex JSON..16
Initial Setup...16
JSON Objects within JSON Objects...16
JSON Arrays...16
Built-in JSON Data Types..17

JSON vs XML..18
Lab: JSON vs XML...20

XML Style Web Service...20
JSON Style Web Service..20
Which is Better?...20

JSON Style Guide..21
Lab: JSON Style..22

JSON Reserved Words..22
JSON Error Style..22
JSON Paging Style...22

JSON Schema..23
Lab: JSON Schema...24

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

3

Reading the Documentation...24
Creating a JSON Schema..24
Reading an Existing JSON Schema..24

JSON Security..25
JSON Injection..25

Preventing Server-Side JSON Injection...26
Preventing Client-Side JSON Injection..26

Lab: JSON Security...27
JSON Standards at the NSA...27
JSON Standards at the IRS...27

Coding JSON...28
JavaScript..28

Converting JSON to JavaScript Objects...28
Converting JavaScript Object to JSON..28

Java..28
Converting JSON to Java Objects..28
Converting Java Objects to JSON..29

Python..29
Converting JSON to Python...29
Converting Python Objects to JSON..29

Best Practices...30
Planning...30
Schema..30
Security..30
Testing...31
Documentation..31
Versioning..31
Follow the Standards...31

References..32
Glossary...34

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

4

Introduction

This is an overview of the JSON data format includes: the background of JSON, comparing it to XML,
where JSON is used in today’s environment and other related subjects. The intent of this document is
to educate the reader in the rules and use of JSON, and expose the reader to JSON security and coding
considerations.

This document contains hands-on exercise that are designed to reinforce the subject at hands and allow
the reader to explore JSON further.

There are a number of URLs referenced in this document, these URLs are listed in the Reference
section at the end of the document.

There is also a Glossary at the end of this document defining the acronyms found in this document.

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

5

Background of JSON

Origins
To quote Wikipedia:

JSON (JavaScript Object Notation) is an open standard file format, and data interchange
format, that uses human-readable text to store and transmit data objects consisting of
attribute–value pairs and array data types (or any other serializable value). It is a very
common data format, with a diverse range of applications, such as serving as a replacement
for XML in AJAX systems.

In the early 2000s, the exchange of data between a web server and a browser was dependent on the
platform or the coding language. At this time Java Applets or Flash applications were the prominent
methods of exchanging data.

A language and platform neutral data exchange format was required. In 2001 Douglas Crockford at
State Software created a new data exchange format based on the JavaScript language. This format was
name JSON indicating its JavaScript heritage. This format was proposed to the ECMA, the standards
organization that defines the JavaScript standard (ECMA Script as ECMA-262). In 2013 ECMA-404
was published as the definitive JSON standard.

Prior to the formal adaption of the JSON standard, the JSON.org website was launched in 2002, and
Yahoo started offering the JSON format for some of its Web Services in 2005.

In 2013 just after ECMA published its JSON standard, the IETF published RFC-7159 based on ECMA-
404.

Douglas Crockford added a clause to the JSON license stating "The Software shall be used for Good,
not Evil" when open-sourcing the JSON libraries. This clause led to license compatibility issues with
open-source software that was addressed in the current JSON standard.

There are a number of extensions to the JSON standard, including the Dojo Toolkit which defines
object references in JSON and JSON-LD from the W3C which defines Linked Data formats.

Current JSON Standards
The current JSON standards include (see References for URLs):

• ECMA-404

• RFC 8259

• ISO/IEC 21778:2017

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

6

Lab: JSON Standards

Exploring the Standards

Please open a Web Browser to:

https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf and read the
Introduction to the ECMA-404 standard.

https://tools.ietf.org/html/rfc8259 and read the Introduction section of RFC 8259 from the IETF.

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

7

https://tools.ietf.org/html/rfc8259
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

Where JSON is used
JSON started out as a web specific data format, this is currently the most common usage. Over time
JSON usage has extended to include NoSQL databases, configuration files, and HTML5 local storage
uses. JSON as a data serialization format is growing in popularity.

Web Applications
JSON is the de facto standard for REST (Representational State Transfer) style web services, and is
used extensively in Ajax Web Applications. REST style Web Services use URL components and verbs
to define the requesed action and response, for example the following URL will perform a HTTP GET
request for the list of world currency codes: https://openexchangerates.org/api/currencies.json. This
HTTP GET URL https://api.weather.gov/points/39.7456,-97.0892 will describe the geographic point
at Latitude 39.7456 and Longitude -97.0892, this point being 7366.9851976444 meters from the center
of Linn KS.

In addition to REST style Web Services, JSON has become very popular in responsive Web
Applications, replacing XML as the data exchange format of choice. This has resulted in a new
anachronism instead of AJAX: Asynchronous JavaScript and XML, we now refer to AJAJ:
Asynchronous JavaScript and JSON.

Using the Blue Nile jewelry web site, and searching for diamonds via:
https://www.bluenile.com/diamond-search will result in an AJAJ style responsive web application.
The best way to see this interaction is to open the web site, then open the Browser Developer Tools to
examine the network traffic that is a response to User actions on the page.

NoSQL Databases
JSON is a popular standard for data exchanges used in NoSQL databases. To quote the MongoDB
documentation:

In MongoDB, data is stored as documents. These documents are stored in MongoDB in
JSON (JavaScript Object Notation) format. JSON documents support embedded fields, so
related data and lists of data can be stored with the document instead of an external table.

Apache Cassandra supports JSON in it’s query language:

INSERT INTO student_registration
JSON '{

"s_id" : "9001",
"s_name" : "Ashish",
"s_email": "a_json1@gmail.com"

}';

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

8

https://www.bluenile.com/diamond-search
https://api.weather.gov/points/39.7456,-97.0892
https://openexchangerates.org/api/currencies.json

Apache CouchDB stores it’s data as JSON style key:value pairs. From the CouchDB
introduction:

CouchDB is a database that completely embraces the web. Store your data with JSON
documents. Access your documents with your web browser, via HTTP. Query, combine,
and transform your documents with JavaScript.

Traditional Relational databases such as Oracle are starting to embrace JSON. From the Oracle
documentation:

 JSON data has often been stored in NoSQL databases such as Oracle NoSQL Database and
Oracle Berkeley DB. These allow for storage and retrieval of data that is not based on any
schema, but they do not offer the rigorous consistency models of relational databases.

To compensate for this shortcoming, a relational database is sometimes used in parallel
with a NoSQL database. Applications using JSON data stored in the NoSQL database must
then ensure data integrity themselves.

Native support for JSON by Oracle Database obviates such workarounds. It provides all of
the benefits of relational database features for use with JSON, including transactions,
indexing, declarative querying, and views.

Configuration Files
JSON is slowly replacing YAML as the configuration file format of choice.

To deploy an application to the Google Cloud you require a JSON configuration file. Here is an
example:

{
 "deployment": {
 "files": {
 "example-resource-file1": {
 "sourceUrl": "https://storage.googleapis.com/[MY_BUCKET_ID]/example-
application/example-resource-file1"
 },
 "images/example-resource-file2": {
 "sourceUrl": "https://storage.googleapis.com/[MY_BUCKET_ID]/example-
application/images/example-resource-file2"
 },
 }
 },
 "id": "v1",
 "handlers": [
 {
 "urlRegex": "/.*",
 "script": {
 "scriptPath": "example-python-app.py"

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

9

 }
 },
],
 "runtime": "python27",
 "threadsafe": true,
}

The W3C requests a JSON configuration file named w3c.json as part of the repository documentation
for projects under the W3C organization umbrella. From the W3C documentation:

Projects operating under the w3c organization (or related to W3C even if under other
umbrellas) are encouraged to specify a w3c.json file at the root of their repository. The
purpose of this file is to provide some metadata about repositories so that they can be
processed automatically by a variety of tools layered atop the organization. They can also
help humans figure out who to contact for a given problem.

Here is an example:
{
 "group": 40318,
 "contacts": ["darobin", "sideshowbarker"],
 "repo-type": "rec-track"
}

The GeoJSON standard was created to address locations such as Points, LineString, Polygon etc. Here
is a GeoJSON example for a Point:

{
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [125.6, 10.1]
 },
 "properties": {
 "name": "Dinagat Islands"
 }
}

HTML 5 Local Storage
HTML 5 uses JSON to store key:value data pairs in both Local Storage and Session Storage. Here is an
example:

<script>
if(localStorage) {
 localStorage.setItem("first_name", "Peter");

 alert("Hi, " + localStorage.getItem("first_name"));
}
</script>

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

10

Node.js
Node.js has evolved into a very popular development and deployment platform. You will see
references to the MEAN stack (MongoDB, ExpressJS, AngularJS, and Node.js).

Node.js is a JavaScript development environment, and has a number of add-on packages to support for
example, Web Applications and Databases. Node.js is configured via a package.json file.

Lab: JSON Usage

Using JSON in a REST style Web Service.

Open a Browser to

http://api.worldbank.org/v2/countries/BR?format=json this will query the World Bank for Brazil.

Try querying for Canada (CA), Japan (JP) or another country.

Try setting the format to XML (or leaving the format parameter off).

Open this URL http://api.worldbank.org/v2/country?region=ARB&format=json

and see the list of countries in the Arab World (ARB).

Try changing the region to:

• EMU:Euro Area
• EUU:European Union
• WLD:World,
• EAP:East Asia & Pacific
• ECA:Europe & Central Asia
• LAC:Latin America & Caribbean,
• MNA:Middle East & North Africa
• SAS:South Asia
• SSA:Sub-Saharan Africa
• CSS:Caribbean small states,
• OSS:Other small states
• PSS:Pacific island small states
• SST:Small states

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

11

http://api.worldbank.org/v2/country?region=ARB&format=json
http://api.worldbank.org/v2/countries/BR?format=json

Using JSON as a configuration format.

Open a Browser to: https://geojson.io/ and replace the current configuration (right side of the screen)
with this configuration:

{
 "type": "FeatureCollection",
 "features": [
 {
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [
 -0.1278,
 51.5074
]
 },
 "properties": {
 "prop0": "London UK"
 }
 }
]
}

This will select London UK. Can you find Moscow RU?
(Hint Moscow is at: 55.7558° N, 37.6173° E)

What about Rome?

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

12

https://geojson.io/

JSON Syntax
JSON has a very simple syntax. Most smart IDEs or text editors will display JSON syntax errors and
color code JSON text files.

JSON like JavaScript is case sensitive.

A JSON file is typically named with a .json suffix.

JSON allows whitespace (space, linefeed, carriage return, tab) between elements for readability.

See: https://www.json.org/json-en.html for the complete JSON syntax.

JSON Objects
JSON objects are delimited by a set of { }. The root element in a JSON will typically be a JSON
object. For example the GeoJSON configuration file referred to earlier starts out with a JSON object:

{
 "type": "FeatureCollection",
 "features": [
 {
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [
 -0.1278,
 51.5074
]
 },
 "properties": {
 "prop0": "London UK"
 }
 }
]
}

Within this file are embedded objects, as seen by the sets of matching { }.
This file has the following JSON Objects;

• The root Object
• Within features there are:

◦ An unnamed Object containing
▪ type
▪ geometry is an Object containing:

• type
• coordinates

◦ The properties Object containing:
▪ prop0

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

13

https://www.json.org/json-en.html

JSON Arrays
An array in JSON is indicated by [] . The above GeoJSON example has an array named “features”,
with two elements within it. Notice the commas delimiting the entries in the array. The first entry in
the “features” array is an unnamed object, the second entry is the object named properties.

JSON arrays may contain any combinations of fields, objects, or arrays. There is no size constraint.

Using an array as the root JSON object is discouraged for security reasons which will be explored later
in this document.

JSON Fields
A field in JSON is simple a name followed by a colon ‘:’ and then the contents of that field. Field
contents (also called value) may be:

• string ← double quotes are used
• number ← may contain an E/e for exponent
• array ← [] are used
• object ← { } are used
• true
• false
• null

Note JSON does not support a native JavaScript Date type, you should convert the date to a string.

JSON strings may include selected escape characters (using a backslash ‘\’):

• Backspace is replaced with \b
• Form feed is replaced with \f
• Newline is replaced with \n
• Carriage return is replaced with \r
• Tab is replaced with \t
• Double quote is replaced with \"
• Backslash is replaced with \\

Unicode characters are also supported in a JSON string (via a \u notation), for example:

{ “name” : “Hel\u008En” } would result in a name of Helèn, and

{ “address” : “42 \u0443\u043B\u0438\u0446\u0430” } would results in 42 улица (street in Russian).

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

14

Lab: JSON Syntax

Working with JSON Objects

Open a Browser to: https://jsoneditoronline.org/ and create the following JSON data:

• A root object to hold your data
• Within the root object add a field called “name” which will contain another JSON object
• Add the following fields within the “name” object:

◦ First Name
◦ Last Name

• Within the root object add a field named “address” which will contain another JSON object
• Add the following fields within the “address” object:

◦ Street
◦ City
◦ State
◦ Postal Code

Working with JSON Arrays

Modify the JSON data you are working with to add an array of phone numbers. Please add the
following numbers:

• Home
• Cell
• Work

Working with JSON Fields

Modify the JSON data you are working with to add the following fields within the root object:

• age ← a number, try integer and floating point
• canadian address ← put null into this field
• citizen ← put true/false into this field
• distance to the moon ← put 238,900 using exponents in this field

Recognizing JSON Errors

Modify the JSON data you are working by removing a comma. What error is indicated? Try removing
a { or [.

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

15

https://jsoneditoronline.org/

Lab: Working with Complex JSON
Open a Browser to https://www.mockaroo.com/ a mock data generator.

Initial Setup

On the Mockaroo web site make the following initial changes:
• Set the number of Rows to: 1
• Set the Format to JSON
• Make sure the Array option is selected
• Make sure the “include null values” is selected

Click the Preview Button to see the JSON data.

JSON Objects within JSON Objects

On the Mockaroo web site make the following changes:
• Change the first_name Field Name to: name.first_name
• Change the last_name to: name.last_name
• Click the “Add another field button” and add the following fields

◦ Field name: address.street – Type: Street Address (click the Type field to select this type)
◦ address.city – City
◦ address.state – State
◦ address.zip – Postal Code

Click the Preview Button to see the JSON data.

JSON Arrays

On the Mockaroo web site make the following changes:
Add the following fields (Field Name - Type):

• phone – JSON Array
• phone.cell – Phone
• phone.home – Phone
• phone.fax – Phone, set the blank to 50%

Click the Preview Button to see the JSON data.
You will see a collection on anonymous JSON Objects in the phone array.

Change the phone.xxx fields to phone.person.xxx fields.

Click the Preview Button to see the JSON data.
You will see a collection on person named JSON Objects in the phone array.

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

16

https://www.mockaroo.com/

Built-in JSON Data Types

On the Mockaroo web site make the following changes:
Add the following fields (Field Name – Type):

• manager – Boolean
• comments – Blank

Click the Preview Button to see the JSON data.

Deselect the “Include null values checkbox”, and preview the data again. You will no longer see the
comments field.

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

17

JSON vs XML
Both JSON and XML are data formats and each offers advantages and disadvantages. XML is the
standard for SOAP style Web Services and JSON is the standard for REST style Web Services.

XML Advantages:
• XML Documents may be encrypted
• XML Documents may be digitally signed
• XML Documents follow a strict structure and may be transformed via XSLT
• XML Documents may be assembled from composite parts
• XML Documents are inter-operable between any number of environments
• XML Documents may contain other markup elements
• XML Documents may be validated against a DTD or a Schema
• XML supports extensive data types

XML Disadvantages:
• XML does not support arrays
• XML is more verbose than JSON
• XML requires a larger bandwidth for transmission
• XML uses open/close tag, adding redundancy to the document
• XML is more difficult to produce and consume

JSON Advantages:
• JSON is faster than XML
• JSON is more compact
• JSON supports null values
• JSON is easy to produce and consume
• JSON is easier to read

JSON Disadvantages:
• JSON does not provide error handling
• Mishandling un-trusted JSON may result in a security issue
• JSON does not have Namespaces
• Schema support on JSON is basic

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

18

Favor XML over JSON when any of these are true:

• You need message validation
• You're using XSLT
• Your messages include a lot of marked-up text
• You need to interoperate with environments that don't support JSON
• You need to encrypt or sign the document

Favor JSON over XML when all of these are true:

• Messages don't need to be validated, or validating their deserialization is simple
• You're not transforming messages, or transforming their deserialization is simple
• Your messages are mostly data, not marked-up text
• The messaging endpoints have good JSON tools

When all the conditions are equal, favor JSON for two reasons:
• JSON is a lot lighter to parse than XML (CPU friendly)
• JSON requires lot less data to be transferred (Network friendly)

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

19

Lab: JSON vs XML

XML Style Web Service

Open a Browser to the National Weather Service XML (SOAP) Style Web Service:
https://graphical.weather.gov/xml/SOAP_server/ndfdXMLclient.php?
whichClient=NDFDgen&lat=40.015&lon=-105.2705&product=glance

This is the weather forecast for Boulder CO, latitude 40.015 and longitude -105.270.

What is the expected low temperature tonight?

JSON Style Web Service

Open a Browser to the National Weather Service JSON (REST) Style Web Service:
https://api.weather.gov/gridpoints/BOU/53,74/forecast

What is the expected low temperature tonight?

Which is Better?

Which of the weather forecasts is better for a human to read?
Which has more data?
Which do you prefer? Why?
Which supports more complex data exchange?

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

20

https://api.weather.gov/gridpoints/BOU/53,74/forecast
https://graphical.weather.gov/xml/SOAP_server/ndfdXMLclient.php?whichClient=NDFDgen&lat=40.015&lon=-105.2705&product=glance
https://graphical.weather.gov/xml/SOAP_server/ndfdXMLclient.php?whichClient=NDFDgen&lat=40.015&lon=-105.2705&product=glance

JSON Style Guide
JSON is a flexible data format and whitespace is optional so both of the following examples are valid
JSON:

{"id":1,"name":{"first_name":"Gradeigh","last_name":"Coultous"}

{
 "id": 1,
 "name": {
 "first_name": "Gradeigh",
 "last_name": "Coultous"
 }

The second example is much easier to read and modify. Styling JSON allows humans to manage the
the data, and avoid simple mistakes and misunderstandings.

Google publishes a JSON style guide that is the de facto standard: https://google.github.io/styleguide/
jsoncstyleguide.xml

 Here are a few of the highlights of this style guide:
• No comments in JSON
• Use double quotes
• Use camelCase for field names
• Use whitespace for readability
• Choose meaningful names
• Array names should be plural
• Field names should be singular
• Dates should be formatted as RFC 3339
• Time durations should be formatted as ISO 8601
• Latitudes/Longitudes should be formatted as ISO 6709

The style guide offers suggestion for JSON paging, errors, and links.

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

21

https://google.github.io/styleguide/jsoncstyleguide.xml
https://google.github.io/styleguide/jsoncstyleguide.xml

Lab: JSON Style

JSON Reserved Words

Open a Browser to the Google JSON Style Guild

(https:google.github.io/styleguide/jsoncstyleguide.xml)

Find the Reserved Word list (Appendix A).

Notice the JSON reserved words are derived from the JavaScript (ECMAScript) reserved word list.

JSON Error Style

Within the Google JSON Style Guild, find the recommended style for error objects.

JSON Paging Style

Open a Browser to the World Bank REST Web Service:

http://api.worldbank.org/country?per_page=10®ion=WLD&format=json

Does the World Bank follow the Google JSON Style Guide for paging?

Add the following to the end of the World Bank URL above: &page=2

Do the results show the correct page number?

What happens when you request a page the does not exist? page=25

What happens when you change the region to region=WLX (an error)?

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

22

http://api.worldbank.org/country?per_page=10®ion=WLD&format=json
https://google.github.io/styleguide/jsoncstyleguide.xml

JSON Schema
To quote json-schema.org:

JSON Schema is a vocabulary that allows you to annotate and validate JSON documents.

Defining a schema for JSON data provides:
• A description for the data
• Documentation for the data
• Validates the data for testing
• Ensures data quality

Here is an example of a JSON schema:

{
 "$schema": "http://json-schema.org/2019-09/schema#",
 "title": "Product",
 "description": "A product from Acme's catalog",
 "type": "object",

 "properties": {

 "id": {
 "description": "The unique identifier for a product",
 "type": "integer"
 },

 "name": {
 "description": "Name of the product",
 "type": "string"
 },

 "price": {
 "type": "number",
 "minimum": 0,
 "exclusiveMinimum": true
 }
 },

 "required": ["id", "name", "price"]
}

There are a number of existing JSON Schema, see https://www.schemastore.org/json/ for a repository
of JSON Schemas.

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

23

https://www.schemastore.org/json/

Lab: JSON Schema

Reading the Documentation

Open a Browser to: https://www.ietf.org/archive/id/draft-bhutton-json-schema-00.txt and read
Section 3 Overview.

Please note there are now two media types to support JSON:
• application/json → for JSON documents
• application/schema+json → for JSON Schema documents

Creating a JSON Schema

Open a Browser to https://www.mockaroo.com/ and using the defaults to generate a simple 1 row
JSON sample. Click Preview button and copy the JSON data.

Open a new Browser tab to https://extendsclass.com/json-schema-validator.html and paste the
Mackaroo data into the left side window.

Click the Generate Schema From JSON button.

Change the id field from an integer to a string by putting double quotes around the value for the id
field.

Notice the error message, when the data no longer validates against the schema.

What happens if you make the id field a floating point number? Does it matter if the value is 1.0 or 1.5?

Reading an Existing JSON Schema

Open a Browser to https://www.schemastore.org/json/, and explore the following schemas:
• CityJSON – The JSON Schema for 3D City models.
• package.json – The JSON Schema for Node NPM packages

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

24

https://www.schemastore.org/json/
https://extendsclass.com/json-schema-validator.html
https://www.mockaroo.com/
https://www.ietf.org/archive/id/draft-bhutton-json-schema-00.txt

JSON Security
JSON by itself is not a security issue, JSON is a data exchange format. JSON by itself is just a
document. Security concerns occur in the way JSON is used.

JSON used as a configuration format or as NoSQL document storage is not an issue, when JSON is
used in a Web Application the door is opened to mishandling of the data.

Converting JSON to native JavaScript could introduce an number of web vulnerabilities. The ability to
inject arbitrary JavaScript as part of a data transfer opens the door to a Cross Site Script (XSS) attack or
a Cross Site Request Forgery (XSRF) attack. These are among the OWASP Top Ten web attacks, see:
https://owasp.org/www-project-top-ten/.

The following is a simple JSON injection attack:

1. The web page builds a JSON object using data from the HTML form.

var result = eval("(" + json_string + ")");
document.getElementById("#account").innerText = result.account;
document.getElementById("#user").innerText = result.name;
document.getElementById("#pass").innerText = result.pass;

2. The Hacker enters this into the account field of the form:

user"});<script>document.location(“http://MySpoofingSite.com”);</
script>({"account":"user

3. Resulting in JavaScript in the JSON document.
4. As result of the JavaScript eval() function, the web page is relocated to the spoofing site and the

User has no clue.

A Web Application consists of the Server-Side handling and the Client-Side handling. It is on the
Client-Side that JSON security concerns appear. Client-Side usually means HTML, JavaScript and
CSS.

JSON Injection
The term “JSON injection” may be used to describe two primary types of security issues:

• Server-side “JSON injection” happens when data from an untrusted source is not sanitized by
the server and written directly to a JSON stream.

• Client-side “JSON injection” happens when data from an untrusted JSON source is not
sanitized and parsed directly using the JavaScript eval function.

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

25

http://MySpoofingSite.com/
https://owasp.org/www-project-top-ten/

Preventing Server-Side JSON Injection

It’s important to use a formal JSON parser and sanitizer when handling untrusted JSON on the server
side. For example, the Java Programming language can utilize the OWASP JSON Sanitizer for Java.

A JSON sanitizer would take this code:

[“”]

And turn it into this code:

[“”]

Notice the < and >, these will display ‘<’ and ‘>’, but run as JavaScript.

If you are doing JSON 100% properly, then you will only have objects at the top level. Arrays, Strings,
Numbers, etc will all be wrapped. A JSON object will then fail to eval() because the JavaScript
interpreter will think it's looking at a block rather than an object.

Preventing Client-Side JSON Injection

Preventing JSON Injection Client-Side, is wholly dependent on the JavaScript command used. The
eval() function should not be used, it will execute the injected JavaScript found in the JSON data.

 JavaScript has a parse() function that is much safer and will not result in executable JavaScript. It
should be the function of choice when building JavaScript object from a JSON document.

It is also recommended to have a JSON Object as the root element in your JSON data, avoid using a
JSON Array as the root element. A JSON Object would not evaluate as embedded JavaScript, whereas
a JSON Array would.

Apply exception handlers in the appropriate place as JSON.parse() can throw an exception.

Don't make assumptions about what data is there, you must explicitly test for data before using it.

Only process properties you are specifically looking for (avoiding other things that might be in the
JSON).

Validate all incoming data as legitimate, acceptable values.

Sanitize the length of data (to prevent DOS issues with overly large data).

Don't put this incoming data into places where it could be further evaluated such as directly into the
HTML of the page or injected directly into SQL statements without further sanitization to make sure it
is safe for that environment.

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

26

http://www.hacker.com/steal_data
http://www.hacker.com/steal_data

Lab: JSON Security

JSON Standards at the NSA

Open a Browser to:
https://apps.nsa.gov/iaarchive/library/reports/security_guidance_for_json.cfm

Click the button to Get File. This is the Security Guidance for the Use of JavaScript Object Notation
(JSON) and JSON Schema from the NSA.

Read Section 3 - JSON Recommendations.

JSON Standards at the IRS

Open a Browser to:
https://www.irs.gov/irm/part2/irm_02-005-003

And search the IRS Programming and Source Code Standards for JSON references.

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

27

https://www.irs.gov/irm/part2/irm_02-005-003
https://apps.nsa.gov/iaarchive/library/reports/security_guidance_for_json.cfm

Coding JSON

JavaScript

Converting JSON to JavaScript Objects
var text = '{ "employees" : [' +
'{ "firstName":"John" , "lastName":"Doe" },' +
'{ "firstName":"Anna" , "lastName":"Smith" },' +
'{ "firstName":"Peter" , "lastName":"Jones" }]}';

var obj = JSON.parse(text);

<p id="demo"></p>

<script>
 document.getElementById("demo").innerHTML =
 obj.employees[1].firstName + " " + obj.employees[1].lastName;
</script>

Notice the use of JSON.parse(), it is a Best Practice to avoid using JSON.eval() as this could execute
embedded JavaScript in the JSON data and is a security issue.

Converting JavaScript Object to JSON
var obj = { name: "John", age: 30, city: "New York" };
var myJSON = JSON.stringify(obj);
document.getElementById("demo").innerHTML = myJSON;

The JSON.stringify() function converts JavaScript object to JSON objects.

Java
JSON support was introduced in Java EE 7, prior to this release you were required to add a 3rd party
framework to work with JSON in Java. The following example use the json.jar from json.org.

Converting JSON to Java Objects
Object obj=JSONValue.parse(json_data);
JSONObject jsonObject = (JSONObject) obj;

String name = (String) jsonObject.get("name");
double salary = (Double) jsonObject.get("salary");
long age = (Long) jsonObject.get("age");

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

28

Converting Java Objects to JSON
JSONObject obj = new JSONObject();
obj.put("name", "foo");
obj.put("num", new Integer(100));
JSONArray codes = new JSONArray();
codes.add(“CO”);
codes.add(“NY”);
codes.add(“UT”);
obj.put(“codes”, codes);
obj.put("balance", new Double(1000.21));
obj.put("is_vip", new Boolean(true));

Python
The Python Standard Library has built-in support for JSON. As following code examples illustrates.

Converting JSON to Python
json_string = """
{
 "researcher": {
 "name": "Ford Prefect",
 "species": "Betelgeusian",
 "relatives": [
 {
 "name": "Zaphod Beeblebrox",
 "species": "Betelgeusian"
 }
]
 }
}
"""
data = json.loads(json_string)

The data object is now a Python Dictionary. The json.loads() function converts a JSON string into a
Python object.

Converting Python Objects to JSON
json_string = json.dumps(data)

The json.dump(data, file_name) or json.dumps(data) function coverts Python object to JSON,
json.dumps() builds a string, and json.dump() outputs to a file.

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

29

Best Practices

When producing or consuming JSON, there are a number of Best Practices to follow.

Planning
Always plan before you code, you need to able to answer the following questions before you start
writing your JSON application:

• What is the root JSON object

• How many JSON fields are required

• What is the type and name of each field

• What are the business rules for each field

• What error conditions and messages are possible

Schema
When designing a JSON data exchange, documenting the data format is critical. Defining and using a
JSON schema will help define the data, and control “data creep” that can occur when the data exchange
is ad-hock.

When choosing a JSON schema, the first step is to look for an industry standard you can use such as
the W3C JSON schemhttps://github.com/owasp/json-sanitizera for Financial products
https://www.w3.org/community/fibo/wiki/FinancialProduct_example, or a JSON schema for
Quantum Chemistry https://molssi-qc-schema.readthedocs.io/en/latest/.

If there is no industry standard JSON schema, you should create a schema for your data and document
it. The JSON Schema web site https://json-schema.org/ provides a template for you to reuse.

Security
Always use a JavaScript JSON parse() function, do not use JSON eval() function.

Always use a HTTP POST to serve JSON, never a GET, this will prevent most CSRF attacks.

Always wrap Server-Side JSON output in a JSON root Object. Never wrap the JSON in a root Array, as
an Array is valid JavaScript and be be executed, where an Object is not valid JavaScript and will not be
executed.

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

30

https://json-schema.org/
https://molssi-qc-schema.readthedocs.io/en/latest/
https://www.w3.org/community/fibo/wiki/FinancialProduct_example

Always sanitize any JSON being sent from a server.

Always check the length of the JSON data, extremely long lengths are an indicator of injected data.

Validate the JSON against a JSON Schema if there is one available.

Testing
Test your Server-Side JSON producer, include in the tests injected JSON, null values, schema
violations and all business data values. Automate your tests so they can be re-executed as needed.

Test your Client-Side JSON consumer, include in the tests injected JSON, null values schema
violations and all business data values. Automate your tests so they can be re-executed as needed.

Documentation
Always document your JSON, consider creating a schema and reference JSON examples.

Document any JSON error string and include the cause of the error,

Versioning
Adding a version number to your schema and JSON documents will make it easier to release new
editions of your data.

Follow the Standards
Do not “stretch” JSON beyond what it was designed to do. Do not get “creative” and try to make the
JSON format handle operations, it only transports data.

Use the correct HTTP verb to query, insert, update or delete on a REST Web Application.

Keep informed of the latest JSON standards, including the new JSON Streaming standard being
proposed by the W3C.

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

31

References

The following URLs are referenced in this document:

https://creativecommons.org/licenses/by-nc-nd/4.0/ - The Creative Commons license

https://www.json.org/json-en.html – The JSON web site

https://en.wikipedia.org/wiki/JSON – The JSON Wikipedia page

https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf – The ECMA-
404 JSON standard

https://tc39.es/ecma262/ - The ECMA Script (JavaScript) draft 2021 standard

https://tools.ietf.org/html/rfc8259 – The current JSON standard

https://tools.ietf.org/html/std90 – the IETF JSON Data Interchange Format standard

https://www.iso.org/standard/71616.html – The ISO/IEC JSON Standard

https://dojotoolkit.org/reference-guide/1.7/dojox/json/ref.html#:~:text=Usage-,dojox.,%2C
%20and%20cross%2https://github.com/owasp/json-sanitizerDsite%20referencing – the Dojo
JSON extension

https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf – the JavaScript
standard

https://www.w3.org/TR/json-ld11/ - The W3C JSON based Serialization for Linked Data standard

https://w3c.github.io/w3c.json.html – The W3C requirement for a JSON file in all W3C projects

https://geojson.org/ - the GeoJson web site (IETF RFC 7946)

https://geojson.io/ - On-line GeoJson map display tool

https://www.w3.org/community/fibo/wiki/FinancialProduct_example - The W3C JSON Schema
example for Financial Products

https://molssi-qc-schema.readthedocs.io/en/latest/ - The JSON Schema for Quantum Chemistry

https://json-schema.org/ - The JSON Schema web site

https://openexchangerates.org/api/currencies.json – REST style Web Service to list World currency
codes

https://api.weather.gov/points/39.7456,-97.0892 – REST style Web Service to document a Latitude
and Longitude point

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

32

https://api.weather.gov/points/39.7456,-97.0892
https://openexchangerates.org/api/currencies.json
https://json-schema.org/
https://molssi-qc-schema.readthedocs.io/en/latest/
https://www.w3.org/community/fibo/wiki/FinancialProduct_example
https://geojson.io/
https://geojson.org/
https://w3c.github.io/w3c.json.html
https://www.w3.org/TR/json-ld11/
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
https://dojotoolkit.org/reference-guide/1.7/dojox/json/ref.html#:~:text=Usage-,dojox.,%2C%20and%20cross-site%20referencing
https://dojotoolkit.org/reference-guide/1.7/dojox/json/ref.html#:~:text=Usage-,dojox.,%2C%20and%20cross-site%20referencing
https://www.iso.org/standard/71616.html
https://tools.ietf.org/html/std90
https://tools.ietf.org/html/rfc8259
https://tc39.es/ecma262/
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://en.wikipedia.org/wiki/JSON
https://www.json.org/json-en.html
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.bluenile.com/diamond-search – AJAJ style Web Application

https://docs.mongodb.com/guides/server/introduction/ - The MongoDB documentation

https://docs.couchdb.org/en/stable/intro/ - The CouchDb documentation

https://docs.oracle.com/database/121/ADXDB/json.htm/ - Using JSON in Oracle

https://cloud.google.com/appengine/docs/admin-api/creating-config-files/ - Use JSON to deploy an
application to the Google Cloud

https://w3c.github.io/w3c.json.html – The W3C JSON configuration file documentation

https://www.w3schools.com/whatis/whatis_json.asp/ - The W3Schools JSON tutorial

https://www.freeformatter.com/json-formatter.html/ - On-line JSON formatter

https://www.mockaroo.com/ - A mock data generator.

https://google.github.io/styleguide/jsoncstyleguide.xml – the Google JSON Style Guide

https://tools.ietf.org/html/rfc3339/ - Formatting Dates in JSON

https://www.iso.org/iso-8601-date-and-time-format.html/ - Formatting Time Durations in JSON

https://www.iso.org/standard/39242.html/ - Formatting Latitudes/Longitudes in JSON

https://www.ietf.org/archive/id/draft-bhutton-json-schema-00.txt/ - The JSON Schema IETF
standard

https://extendsclass.com/json-schema-validator.html/ - On-line JSON Schema builder

https://www.schemastore.org/json/ - A list of existing JSON Schemas

https://www.cityjson.org/ - JSON files to define 3D city models

https://www.npmjs.com/package/node/ - Node Package Manager

https://github.com/owasp/json-sanitizer/ - The OWASP JSON Sanitizer for Java

https://owasp.org/www-project-top-ten/ - The OWASP Top Tens web attacks

https://apps.nsa.gov/iaarchive/library/reports/security_guidance_for_json.cfm – The NSA JSON
Security Guidelines

https://www.irs.gov/irm/part2/irm_02-005-003 – The IRS Programming and Source Code Standards

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

33

https://www.irs.gov/irm/part2/irm_02-005-003
https://apps.nsa.gov/iaarchive/library/reports/security_guidance_for_json.cfm
https://owasp.org/www-project-top-ten/
https://github.com/owasp/json-sanitizer
https://www.npmjs.com/package/node/
https://www.cityjson.org/
https://www.schemastore.org/json/
https://extendsclass.com/json-schema-validator.html/
https://www.ietf.org/archive/id/draft-bhutton-json-schema-00.txt/
https://www.iso.org/standard/39242.html/
https://www.iso.org/iso-8601-date-and-time-format.html/
https://tools.ietf.org/html/rfc3339/
https://google.github.io/styleguide/jsoncstyleguide.xml
https://www.mockaroo.com/
https://www.freeformatter.com/json-formatter.html/
https://www.w3schools.com/whatis/whatis_json.asp/
https://w3c.github.io/w3c.json.html
https://cloud.google.com/appengine/docs/admin-api/creating-config-files/
https://docs.oracle.com/database/121/ADXDB/json.htm/
https://docs.couchdb.org/en/stable/intro/
https://docs.mongodb.com/guides/server/introduction/
https://www.bluenile.com/diamond-search

Glossary

AJAJ – Asynchronous JavaScript and JSON

AJAX – Asynchronous JavaScript and XML

DTD - Document Type Definition

ECMA – European Computer Manufacturers Association

IDE – Integrated Development Environment

IEC – International Electrotechnical Commission committee of the ISO

IETF - Internet Engineering Task Force

ISO – International Organization for Standardization

JSON – JavaScript Object Notation

MEAN – MongoDB, ExpressJS, AngularJS, and Node.js

NPM – Node Package Manager

NSA – National Security Agency

OWASP – Open Web Application Security Project

SOAP - Simple Object Access Protocol

W3C – World Wide Web Consortium

XML – Extensible Markup Language

XSTL - Extensible Stylesheet Language Transformations

YAML – Yet Another Markup Language

Copyright © 2021 Jonathan Earl
Jonathan@Earl-Family.Net

34

	Copyright
	Introduction
	Background of JSON
	Origins
	Current JSON Standards
	Lab: JSON Standards
	Exploring the Standards

	Where JSON is used
	Web Applications
	NoSQL Databases
	Configuration Files
	HTML 5 Local Storage
	Node.js
	Lab: JSON Usage
	Using JSON in a REST style Web Service.
	Using JSON as a configuration format.

	JSON Syntax
	JSON Objects
	JSON Arrays
	JSON Fields
	Lab: JSON Syntax
	Working with JSON Objects
	Working with JSON Arrays
	Working with JSON Fields
	Recognizing JSON Errors

	Lab: Working with Complex JSON
	Initial Setup
	JSON Objects within JSON Objects
	JSON Arrays
	Built-in JSON Data Types

	JSON vs XML
	Lab: JSON vs XML
	XML Style Web Service
	JSON Style Web Service
	Which is Better?

	JSON Style Guide
	Lab: JSON Style
	JSON Reserved Words
	JSON Error Style
	JSON Paging Style

	JSON Schema
	Lab: JSON Schema
	Reading the Documentation
	Creating a JSON Schema
	Reading an Existing JSON Schema

	JSON Security
	JSON Injection
	Preventing Server-Side JSON Injection
	Preventing Client-Side JSON Injection

	Lab: JSON Security
	JSON Standards at the NSA
	JSON Standards at the IRS

	Coding JSON
	JavaScript
	Converting JSON to JavaScript Objects
	Converting JavaScript Object to JSON

	Java
	Converting JSON to Java Objects
	Converting Java Objects to JSON

	Python
	Converting JSON to Python
	Converting Python Objects to JSON

	Best Practices
	Planning
	Schema
	Security
	Testing
	Documentation
	Versioning
	Follow the Standards

	References
	Glossary

